трёхкомпонентные
системы, физико-химические
системы, состоящие из трёх компонентов. Примерами практически важных Т. с. являются металлические
Сплавы, а также сплавы солей, окислов (шлаки), сульфидов (штейны),
системы из воды и 2 солей с общим ионом. Согласно фаз правилу (См.
Фаз правило), вариантность (число термодинамических степеней свободы) конденсированных Т. с. (не содержащих газообразной фазы) при постоянном давлении определяется выражением
υ = 4 -
φ, где
φ - число фаз
системы. Чтобы получить представление о характере взаимодействия компонентов и практическом применении Т. с., необходимо знать их диаграммы состояния (См.
Диаграмма состояния) и диаграммы состав - свойство (См.
Диаграмма состав - свойство).
Состояние Т. с. однозначно определяется (при постоянном давлении) 3 переменными: температурой Т и концентрациями 2 компонентов (концентрация третьего компонента определяется из условия х + y + z = 100, где х, у, z - концентрации компонентов). Концентрации обычно выражают в процентах (атомных, молекулярных, по массе). Следовательно, для изображения диаграмм состояния Т. с. необходимо трёхмерное пространство: два измерения служат, чтобы показать изменения состава, а третье показывает изменение температуры фазовых превращений (или свойств). Температуру (или величину свойства) откладывают по вертикальной оси; для указания состава Т. с. обычно применяют равносторонний треугольник, который называется концентрационным (рис. 1). Его вершины А, В, С соответствуют чистым компонентам А, В, С. Каждая сторона треугольника разделена на 100 равных частей. Составы двойных систем А - В, В - С и А - С изображают точками на сторонах AB, BC и AC, а составы Т. с. - точками F внутри треугольника ABC. Способы определения состава в точке F основаны на геометрических свойствах равносторонних треугольников: например прямые Fa, Fb и Fc, параллельные соответственно сторонам BC, AC и AB, отсекают отрезки Ca, Ab и Bc, сумма которых равна стороне треугольника. Точке F на рис. 1 соответствует х\% А, у\% В и z\% С.
Трёхмерные диаграммы состояния Т. с. представляют в виде трёхгранных призм, ограниченных сверху сложными поверхностями ликвидуса, являющимися геометрическим местом точек, каждая из которых соответствует температуре начала кристаллизации. На рис. 2 показан простейший пример диаграммы состояния Т. с. А - В - С, компоненты которой не образуют между собой химических соединений, неограниченно взаимно растворимы в жидком состоянии и не способны к полиморфным превращениям. Двойные системы А - В, В - С и А - С с эвтектическими точками e1, e2 и e3 изображают на гранях призмы. Ликвидус состоит из поверхностей Ae1Ee3 (начало кристаллизации А), Be1Ee2 (начало кристаллизации В) и Ce2Ee3 (начало кристаллизации С). Плоскость PQR, проходящая через точку тройной эвтектики Е параллельно основанию призмы, является солидусом Т. с. (геометрическим местом точек, соответствующих температурам конца кристаллизации).
В точке Е число сосуществующих фаз, максимальное для Т. с., равно 4 (жидкость и кристаллы А, В, С), а их равновесие нонвариантно (температура кристаллизации и состав фаз постоянны).
Пользоваться объёмным изображением диаграмм состояния Т. с. практически очень неудобно, поэтому применяют ортогональные проекции и сечения: горизонтальные - изотермические и вертикальные - политермические (см.
Физико-химический анализ). На
рис. 3 показана проекция диаграммы
рис. 2 на плоскость треугольника
A'B'C'. На ней 3 поверхности ликвидуса изображаются 3 полями кристаллизации
A'e'1E'e'3,
B'e'1E'e'2 C'e'2E'e'3, проекция солидуса, очевидно, совпадает с треугольником
A'B'C'. Стрелки указывают направления понижения температур. Рассмотрим последовательность выделения твёрдых фаз в поле
A'e'1E'e'3. Если точка
F лежит на прямой
A'E', то из жидкой фазы при охлаждении выпадают кристаллы А, причём отношение концентраций В и С остаётся постоянным. В результате, когда состав Т. с. достигнет точки
E', начинается совместная кристаллизация компонентов А, В и С при постоянной температуре (так как при 4 фазах и постоянном давлении Т. с. нонвариантна). Если точка
F1 лежит в области
A'e'1E'; то сначала выпадают кристаллы А, затем, когда состав жидкой фазы дойдёт до точки
f1, по кривой
e1E' пойдёт совместная кристаллизация А и В, затвердевание закончится в точке
E'. Итак, последовательность кристаллизации жидкой фазы состава
F1 изображается в совокупности отрезком
F1f1E'.
Подобным же образом можно проследить ход кристаллизации любой жидкой фазы
системы А - В - С. На той же проекции наносят изотермы начала кристаллизации (показаны тонкими линиями). Вертикальные сечения более сложны, чем диаграммы двойных
систем. Исключение составляют так называемые квазибинарные сечения тех Т. с., где образуются двойные и
тройные соединения постоянного состава. Правила проведения таких сечений (сингулярная триангуляция Т. с.), впервые сформулированные в 1925 Н. С.
Курнаковым, позволяют упростить рассмотрение сложных Т. с.
Экспериментальное построение полных диаграмм состояния Т. с. очень трудоёмко. Между тем для практических целей нередко достаточно построения боковых двойных систем и положения моновариантных кривых, нонвариантных точек и областей распространения твёрдых растворов на основе компонентов Т. с. В ряде случаев термодинамические расчёты простейших типов двойных и тройных диаграмм состояния дают результаты, близкие к экспериментальным данным. Для расчётов равновесий в Т. с. используют различные упрощённые модели; для решения сложных термодинамических уравнений разработаны специальные программы и применяется вычислительная техника.
Лит.: Курнаков Н. С., Избр. труды, т.1-3, М., 1960-63; Аносов В. Я., Погодин С. А., Основные начала физико-химического анализа, М. - Л., 1947; Воловик Б. Е., Захаров М. В., Тройные и четверные системы, М., 1948; Петров Д. А., Тройные системы, М., 1953; Справочник по плавкости систем из безводных неорганических солей, т. 1-2, М, - Л., 1961; Захаров А. М., Диаграммы состояний двойных и тройных систем, М., 1964; Ванюков А. В., Зайцев В. Я., Шлаки и штейны цветной металлургии, М., 1969; Крестовников А. Н., Вигдорович В. Н., Химическая термодинамика, 2 изд., М., 1973; Кауфман Л., Бернстейн Х., Расчет диаграмм состояния с помощью ЭВМ, пер. с англ., М., 1972; Диаграммы состояния металлических систем, в. 1-18, М., 1959-75.
Рис. 1 к ст. Тройные системы.
Рис. 2 к ст. Тройные системы.
Рис. 3 к ст. Тройные системы.